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PREFACE

In this short volume, we deal with some tests of hypothesis

which are frequently encountered in the analysis of multivariate

data. The type of hypothesis considered is that which can be

answered in the negative or affirmative by the statistician (with

certain calculable probabilities of being wrong).

It will be recognized that this type of hypothesis covers

but a small part of the statisticians work in the multivariate

field. In the simplest of all'cases we may be presented with a

sequence of vector observations and asked to judge whether or not

these vector observations could have been drawn from a population

with vector mean .E.0. If the statistician judges 'no, then almost

inevitably he will be asked "if the time population mean vector is

u which you (the statistician) say is not u , in which of its ele-

ments is u different from
-o

?" The best the statistician can do

in answer to this question is to make an educated guess. For sup-

pose the vector has m elements and u - u = e. The statistician
....

has judged that the vector e is not the vector of all zeros and by

controlling his first kind of error to the usual 5%, he will be

wrong on the average one time in twenty situations where u really

isuo. But in answer to the follow-up question he is being asked

to pick the correct alternative of 2m-1 possible alternatives:

that e differs from 0 only in its i-th position for some i

that e differs from 0 only in its i-th and j-th position for some

i and j (iAj)

--1111111111.11risimmi
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etcetera

that e differs from 0 in all but its i-th position for some i.

'There are no statistical techniques which enable the statistician

to announce (for example) "u differs from ao in its first and third

position only and there's a 5% nhance that I'm wrong." The heart

of the matter lies in the theoretical impossibility of putting a

probability of error on the statement. In connexion with this, the

reader should consult section 11.6; page 258.

Nevertheless, certain proceedures are available which can be

described only as logical proceedures upon which to base an

educated guess. It is these proceedures which are not developed

in this volume though the reader is referred to Part III of this

contract written by Rolf Bargmann for a detailed discussion,

illustration and analysis of a similar type of multi-alternative

problem and to Chapter 15 of these notes for an introduction to

that problem.



230

CHAPTER 10

THE DOOLITTLE METHOD

10.1 Introduction

10.i
10.1,10.2

In the process of the analysis of actual experimental data,

it will frequently be necessary to evaluate the determinant of a

matrix of high order; to solve a matrix equation or to invert a

matrix of high order. The Doolittle method is well established

as a computational technique which lends itself to the use of a

desk calculator or electronic computor and is widely used in the

analysis of multivariate data. The evaluation of a determinant,

matrix invertion, and solution of the matrix equation is accom-

plished through a series of systematic elementary mathematical

operations.

10.2 The forward Doolittle process.

Given a ,symmetric, positive definite matrix A with known

elements, we may wish to

(a) evaluate IAI

(b) determine As.1

(c) determine 0 satisfying AO = B (B given) .

We shall hold that A be mxm; in problem (c) above, B may be mxk

(k<m) so that 0 is also mxk. It is noted that problems (b) and

(c) are not dissimilar for if we set B=I, then 0=A-1. We will

discuss problem (c) and give the methods for (a) and (b) as

special cases.
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10.2

Set out algebraically, the computation table has the appearance:

all

all

a12

a12

a13

a313

a14

a14

1 an an a14

(a
21

) a
22

a23 a24

(0) a*
22

a*
23

a*
24

(0) 1 a**
23

a*4 *

(a 31
)(a

32) a33
a34

lm

.... `''lm

.... alm

.... a2m

.. .. -2A*

... a2m

b
11

b*
11

b
12

b*
12

b1**
1

b*12 *

b
21

b
22

b13 .... bik

b* b*13 "" -lk
b*1*

3
b*l*"" k

b
23 b2k

111 142 b133

bg

X2

x2

a3m

(0) (0) a13 a34 agm

(0) (0) 1 .34

b
31

b
32

b
33

b
3k

b* b* b* b*
31 32 33 64" 3k

131 b32 111

X3

-
X
.1:

3

1611 MM. Gab

amm

a*mm

a**mm

etcetera

b
ml

b
m2

bm3 '""
bmk

b* b* b* b*
ml m2 m3 mk

bm** 1:;*' b* b*m*l m2 m3 k

Xm

xg

It is noted that the first row of the table is the first row of A,

followed by the first row of B, followed by a "check" entry xl which

is actually the sum of all elements (m+k of them) in the first rows

of A and B, so that

(10.2.1) X1 = . 1 alj 1 blj
J=1 =

the second row of the table is the first row repeated [in practice
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the first row could be omitted; it is included here for symmetry].

This second row which is the first starred row is defined then by:

(10.2.2)

a = a .

13 13

b*. = b .

13 13

xi = Xi

= 1, 2, Ito., m

= 1, 2,

The third row (first double-starred row) is produced by dividing

all elements in the proceeding row by the leading element of

that row (that is, by all). The first row of double-starred

elements are defined then by:

(10.2.3)

a* = a* /a*
lj lj 11

b** b* /a*
13 lj 11

Xt* = xyati

j

j

= 1, 2, ...,

= 1, 2, k

The fourth row is produced by writing down the elements of the

second row of A followed by the elments of the second row of B,

followed by the "check" entry x2, where

(10.2.4) LX2 - L ao.
j=1 43

k
I

b2.j=1

In practice the element a21 is not written in (it appears in

brackets in the table since the elements which will appear under

it are zero and do not really enter into the computations). The

second starred row is computed via the equations:-
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alj a2j at2atj

z b2j - at2bt!

X! m X2 at2X1

j

1O.iv
10.2

X 2, 3, 1,11111 m

X 1, 2, woo, k

It is observed that ah a a21 at2a'" a21 a12 s 0 by the

symmetry of A. There is no point in entering this zero in the

table in practice.

The second row of double-starred elements is obtained by

dividing the preceeding row by the element a22 thus

(10.2.6)

a** z a* /a*
23 2j 22

bl! z bli/a12

x xl/q2

j = 2, 3, .41.9 m

j 1, 2, k

The seventh row is the third row of A, followed by the third

row of B, followed by "check" entry x3 defined by

(10.2.7)
m

x3 = a3. b
j=1 3 jz1 33

The third starred row is obtained via the equations

(10.2.8)

alj = a3j-w23arl-at3at j = 3, 4, m

blj = b3j-q3q1-at3bt! j = 1, 2, ..., k

XI = X3`cI3X2I-at3Xt*

It can be shown that a*
31 3

= a*
2

s 0, so that in practice a
31

and

a
32

and any entry below these elements are omitted from the table.

Notice that a23 and an act as multipliers for all elements in
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in the third block, third starred row so that it is a good idea

to pencil a circle round these two (a13 and a!3) when working

in the third block.

The third row of double starred elements are obtained by

dividing the proceeding row by an so that

(10.2.9)

al! = a3i/a13

bl! = b3j/a13

XI* = 4/13

3, 4, 'so, m

= 1, 2, k

In general the first row of the r-th block (17:16-th row) is

the r-th row of A, followed by the r-th row of B, followed by

the "check" entry Xr given by

X = Ia.+ lb.r r3 .

=1 3
rj=1 3

andinpracticetheelerrientsarvarv..".are not entered
;,- r -1

arr.1

since elements {a *.} turn out to be zero. The r-th starredrl i.1

entries are given by

(10.2.10)

r-1
a*.
r3

= . I * is*ar3
1:1

a
ir

a
13

r-1
br3 *. = b . I a* IA*

r3 ir

r-1
X* = Xr

a* x.i=1 ir

j

= r, r+1, ...,

1, 2, k

again; when working in the r-th block it is a good idea to pencil

a circle round elements air,
2

a*r"'" ra*-1:r since they occur
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in all the multiplications. The r-th double starred row is

given by

(10.2.11)

a* = a* /a*
r3 rj rr

b** z b* /a*
r3 rj rr

4 = 4/elr

j = r, r+1, 6669 M

j s 1, 2, k

The process is repeated until all rows of A are exhausted

(producing then m blocks of three line entries).

As a check on the computations, it is noted that

(10.2.12) X**

m k
I a** + 1 b**

j=.1 r3 j=1 r3

m k jar-1
= I a** + I b** (since {a** = 0 }' )

r3 rj rj
jr.1

This completes the so-called "forward" part of the Doolittle

process and it is instructive to consider what has been done

algebraically. It is easy to verify that in order to go from

A = (aij) to A* = (atj), we have premultiplied A by a lower tri-

angular matrix with ones on the diagonal. Calling this matrix

F, we have

(10.2.13) F= 1

f21

f
31

f
41

0

1

f
32

f
42

0

0

1

f
43

0 . .

0 . .

0 . .

1 . .

. 0

. 0

. 0

. 0

a e . . .
. . e . .

I a e

fml fm2 fm3 fm4 I . 1
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In fact, F is the product of matrices

(10.2.14)

where

J
1

= J J
3

J
2

J
1m J

J "."m-1 m-2

I

0 0

0 0 .

0 0 .

1 0 .

. 0

. 0

..ool... . . o

0000 1

10.vii
10.2

and in general Jr is the identity matrix with the r-th row re-

placed by

-a* -a* -a* a*
lr 2r 3r r-1:r

. . 1 , 000..0
all 9 a22 9 a33 9

a-r---- 9

r-1:r-1

Now exactly the same operations are carried out on B as those on

A; accordingly if we define B* = (bigi), then

I FA = A*

(10.2.15)

FB = B*

or F(AiB) = (A*!B*)

To produce the double-starred elements, we divide the r-th row

of (AlB) by a*
r.

Define the diagonal matrix whose r-th diagonal
r

element is a*
r

by Dr
then



(10.2.16)
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D
-1A* = D-1FA = A**

D
-1

B* = D-1I8 a B**

10.viii
10.2,10.3

10.3 The solution of AO=B.

We are new in a position to determine by simple arith-

metic operations. Since

(10.3.1) At = B,

then if F be the forward Doolittle process on A carrying B, then

(10.3.2)

or

(10.3.3)

D
-1FAO = D-1TB

A**. = B**

The solution for is simple by virtue of the fact that A** is

upper triangular. Writing equation (10.3.3) out in more detail:

(10.3.4)

1 a12
2

atA.1 alm

0 1 a23 '" 2m
a** a2**

-1 m

lo lo

lo lo

lo lo lo lo

0 0 0 1 a**m-1:m

0 0 0 0 1

UNIONS

.111011111

011 '12 ". .1k

'1'21 .22 ". '2k

. . .. . .. . .. . .. . .

.m-1:1 .m-1:2

ml 0m2

0 'm-1:k

..mk

b11 ** b*12 * bl**." k

b**
21

b2*2 * b211*(

. . .

. . .

. . .

b** b** b**
m-1:1 m-1:2". m-1:k

bml ** b*m2 * .. . mkb**
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Multiplying the last row of A** into 0 we have

(10.3.5)

10.ix
10.3,10.4

(6
Tm1 +m2 "' Fmk) 2(bml ** bm** **)

''' bmk

Multiplying the penultimate row of A** into 0 we have

(10.3.6) "am-1:1 cl)m-1:k) ag*1:m(cl'ma .m:2'''

= (b** mb**m-1:1 -1:2 ''' brl:k)

k
so that (0m.1 :j)1 are quickly determined.

Similarly for all rows of 0 ending with the first row of 0. An

example is given in section 10.5.

10.4 The determinant and inverse of A,.

Returning to equation (10.2.15), we have, after taking

determinants of left- and right-hand sides,

(10.4.1) 'FHA' = IA *I

but IFI = 1 and IA*I = all a22 agm, therefore

(10.4.2) IA1 = a* a* .. a*
11 22 ' mm

It is important also to observe that if FA = A*, then

1 0 0 ... 0

f
21

1 0 ... 0

f31
1 '" 0

31 32

fri fr2
fr3000 1

all a12 a13 air

a
21

a
22

a
23

so. a2r

a31 a32 ar ... a3r

. .

. . . .

. . . .

. . .

.. aa
rl

a
r2

ars arr

a* a* a*
'' ' l

a*
11 a22 23 r

0 a* a* ... a *
22 a23 2r

0 0 a*
3 ... a3r3r

0 0 0 ... a
r:_:_j.
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all
a
12

... alr

fa
21 a22

a
22 2r

e e e
e e il

a
rl

a
r2

... arr

10.x
10.4

= a* el ...arr

This immediately yields another important result. Let A be

partitioned:

(10.4.4)

[I

A =AIA111 Al2

A A
21 i 22

with A
11

and A
22

--76p) and qxq respectively, where p+q = m. Then

(by clockwise rule)

(10.4.5) (Al 2 1A11 11A22-AnAllA121

Using (10.4.2) and (10.4.3)

(10.4.6) IA-A -1 I *r
altm

22 21
A
11
A
12 a+1:r+1 aill+2:r+2

Turning now to the inverse of A, we carry I (mxm) rather than

general B. In our notation, we have:

(10.4.7)

Notice that

(10.4.8)

II

F(AiI) = (A*:I*)

D
.1 (A*:I*) = (A**:I**) .

. .

= F

I** : D-1 F .
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Now, postmultiplying the first of equations (10.2.15) by F',

we have

(10.4.9) FAF' = A*F'

Since A* and F' are both upper triangular, then so also is their

product; but FAF' (cA*1") is symmetric. Since Astr" is upper

triangular and symmetric, it must be diagonal. Clearly

(A*F')rr
= arr

'
therefore

(10.4.10) FAF' = A* F' = D

so that

(10.4.11) A-1 = F'D-1F

= (I* .I**)

so that

(10.4.12) (A"
1

)
ale

= ((I*)
.a

)' ((I**) )*
.8

that is the (a,8) -th element of A."1 is the inner product of the

a-th column of I* with the 0-th column of I**. An example is

given in the next section.

10.5 Examples of the problems discussed in section 1.

Problem 1

Let it be required to solve for 0 from the equation AO a B

when
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A = 361 532 703 475 0

532 1145 1036 1175 0

703 1036 1469 1025 100

475 1175 1025 1975 725

0 0 100 725 2094

and

3420 2489

5990 5093

7360 5447

8950 8875

5938 6463

10.xii
10.5
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Having performed the forward Doolittle process, the equation

At = B

A** =

becomes A**:

1.00000000

= B** where

1.47368421 1.94736842 1.31578947 0.00000000

zero 1.00000000 0.00000000 1.31578947 0.00000000

zero zero 1.00000000 1.00000000 1.00000000

zero zero zero 1.00000000 1.00000000

zero zero zero zero 1.00000000

1111111

B** INN 9.47368421 6.89473684

2.63157895 3.94736842

7.00000000 6.00000000

4.00000000 5.00000000

2.00000000 2.00000000

We have immediately

051 = 2.00000000

052 = 2.00000000

4)41 = 4.00000000-(1,00000000)(2.00000000) = 2.00000000

4'42 =
5.00000000-(1.00000000)(2.00000000) = 3.00000000

031 = 7.00000000-(1.00000000)(2.00000000)

- (1.00000000)(2.00000000) = 3.00090000

032 = 6.00000000-(1.00000000)(3.00000000)

- (1.00000000)(2.00000000) = 1.00000000

and similarly



.
21

0
22

= 0.00000000

= 0.00000000

= 1.00000000

= 1.00000000
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Problem II

It is required to evaluate the determinant of matrix A

when A is

1 2 3 4 5

2 5 4 4 10

3 4 15 24 17

4 4 24 45 44

5 10 17 44 110

(this matrix has been chosen so that the forward Doolittle

can be performed without the need of a desk calculator).

The computations proceed:
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.01) A

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

10.xvi
10.5

X

15

15

15

5 4 4 10

1 -2 -4 0

1 -2 -4 0

25

-5

-5

15 24 17

2

1

4 2

2 1

63

8

45 44

5 20

1

121

25

5

A = a*. = lx1x2x5x3 = 30

110

3

1

186

3

1

Problem III

It is required to obtain the inverse of A, symmetric, when

A= 1 1 1 o

1 5 -1

1 -1 3

0 2 0

0 3 0

2 3

C. 0

3 1

1 10
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(Here again, for demonstration purposes, A has been chosen

so that the Doolittle proceedure does not require the use

of a desk calculator).

The required table develops as follows:

A I=ipia,
1 1 1 0 0 1 0 0 0 0

1 1 1 0 0 1 0 0 0 0

1 1 1 0 0 1 0 0 0 0

5 -1 2 3 0 1 0 0 0

4 -2 2 3 -1 1 0 0 0

1 -1/2 1/2 3/4 -1/4 1/4 0 0 0

3 0 0 0 0 1 0 0

1 1 3/2 -3/2 1/2 1 0 0

1 1 3/2 -3/2 1/2 1 0 0

3 1 0 0 0 1 0

1 -2 2 -1 -1 1 0

1 -2 2 -1 -1 1 0

10 0 0 0 0 1

3/2 7 -7/2 -7/2 2 1

1 14/3 -7/3 -7/3 4/3 2/3

and the values of (A
-1

)
a0

are obtained (equation 10.4.17)

directly from the entries under "I"; thus

11

7

7/4

4

7/2

7/2

7

0

0

15

9/2

3

-1 3 3 14 482
(A )11 = (1)(1) + (-1)(-4) + (-7)(-7) + (2)(2) + (7)(j.) =

-1 1 3 1 7 232
(A )

12
= (1)(0) + (-1)(.40 + (-7)(7) + (2)(-1) + (7)(-7) =

etcetera
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241 -116 -119 68 28

- 116 58 58 -34 -14

-119 58 61 -34 -14

68 -34 -34 22 8

28 -14 -14 8 4

10.xviii

10.5,10.6

It is advisable as a final check to perform the product AA-1

to make sure the identity matrix does indeed result.

10.6 The com utation of B'A
-1 (A and B riven).

Perform the forward Doolittle on A carrying B:

F(A:B) = (AllB*)

D-1(A*!B*) = (A**: B**)

(10.6.1)

Now since A-1 = F'D
-1F (equation 10.4.16)

(10.6.2)

so that

(10.6.4)

B'A-1B = B'F'D
-1

FB

= (FB)'D-
1FB = (BW(B**)

(B'A-18)a8 = ((Be)
.0

)I((Bee)
.8

)

that is, the (a,0)-th element of B'A-1B is the inner product

of the a-th column of B* with the 8 -th column of B** .

Problem IV

Obtain the value of the quadratic form _'A-lx when
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2 3 3

2 9 6 9 0

A= 6 14 10 10

9

r 33
0

10

10

12

12

12

18
=IOW

x' = (1 0 4 2 3).

The required table develops as follows:

1 2

1 2

1 2

3

3

3

3

3

3

3

3

3

9 6 9 0

5 0 3 -6

1 0 0.6

114 10 10

5 1 1

1 0.2 0.2

1

1

0

- 2

- 0.4

26

0

0

4

1

0.2

47

8

1.6

12

6.4

6.4

2

0

0

48

7.4

7.4

18

-39.36

1

3

-2.6

260

46

-41.96

4196

The value of x'A-1 ix is, from the

(-2)(-0.4) + (1)(0.2) + (0)(0)

=X 'A
-1

x)

entries under x, (1)(1) +

(260) 7196
(2.6)

(3936) 3936
1.828252
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CHAPTER 11

TESTS OF SIMPLE LINEAR HYPOTHESES

11.i
11.1

11.1 Introduction

In this chapter we deal with hypotheses which in the uni-

variate case would lead to a use of the student t-distribution.

In its most general statement we have, say,g groups or popula-

tions and n
i
vector observations from the i-th group. Our

observations will be designated x..aj (j=1,2, on.; i=1,2,...,g)

and it will be assumed

(11.1.1) xaj ../^N N (0)
m -a..17

the N = f n. vectors {x } being mutually independent.
i=1

The most general simple hypothesis is:

(11.1.2) H 0 u +0 +...+0
o° 1a 2

u-2 gu-g = or0

g
where {0.} are a set of specified scalar constants and where

1

p is a specified mxl vector of constants (often the vector of

zeros).

The hypothesis expressed in (11.1.2) includes the following

more familiar cases:

(a) Ho: (one group) u = u-o (g=1;01=1)

(b) Ho: (two groups) ul = u2 (g=2;01=1;02=-1;u =0)

and actually includes the regression model but this will be

treated separately.
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11.2 The test statistic for the general simple linear hypothesis.

Given the observations described in the introduction, that

is, given

(11.2.1) x..r1N(u.a ;V)

it is required to test

(11.2.2) Ii : f 0 =

g
for specified (0.} and u

1

Method:

group

j = 1, 2, 4.41,

i = 1, 2, 000ll

ni

g

Obtain the sample product--cross product matrix for the i-th

(11.2.3)

where

and construct

n.
1

C. =
1

ra
i`aj=1-3 =Lj

n
i

= - n37. 7!
j=1 -613-113

n
i

1 v
X = X .
a. n j=1

a]

(11.2.4) C = C
1

+ C
2

+ + Cg

so that C is an unbiassed estimate of (N-g)V.

Clearly

(11.2.5)

n
i

= Biz. _ p
i=1 -a' -°
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l(:

n.
1

which has expectation I f3l.7. - p is a measure of departure
1=1 o

from no having 0 expectation if H
o

be true. The statistic d is

actually a vector randum variable having the distribution

11.iii
11.2,11.3

(11.2.6)
(34)

2

drNtim(113iyi ; : ) V)"i

so that "standardization to V" is effected by dividing d by

il(B n
i
). The test criterion becomes

(11.2.7) = (L(a.
2

n. ))
-1

d'C-1d

and the critical region of size a is given by

(11.2.8) m F(a)

N-g+l-m m:N -g +1 -m

where F (ma)

m-+l
is the point of the F

m:N-g+l-m density which-g

cuts off 100 a% above. aZI is computed using the Doolittle

proceedure (see Section 10).

11.3 Simple test on the mean of a sinale.Lapulation

In the development of Section 11.2, we replace g by 1,

set a
1

= 1, and observe

(11.3.1) 1, n.

It is required to test 110: u = u The test _criterion becomes

1(11.3.2) 0! = n(7 - c (x -



where

(11.3.3)
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n
C = (x. - 7)(x. -

j=1

ll.iv
11.3,11.4

n
= x.x! - nxx'

j=11-138.-3

C7Z: is computed using the Doolittle proceedure (see Section 10).

The critical region of size a is given by

(11.3.4)
m

F
(a)
m:n-mn-m

11.4 A com arison of the means of two o ulations.

In the development of Section 11.2, we replace g by 2 and

set a
1

= 1; S2 = -1;
1"0

= 0 and observe

(11.4.1)
r\Nm(aa;V)

. N V)
2] m -2

= 1, 6.49 n1

= 1, *449 n2

It is required to test Ho: al = p2 (i.e., .l p2 = 0). The

1
n
1
+n

standardizing factor is + =
n
1

n2 n
1
n
2

becomes

so that the test criterion

n +n
C
_1

(x
-

x
-

)(11.4.2)
1 2 (37

- ) -
n
1
n
2

-1 -2 1 -2

where



(11.4.3)
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n
1 2

C = (x (

j=1 -ai a.
)(x
-ai -4a,

)'

=1 "1x

mx ),

2] 4-2j

n
1

n
2

= x .x' + x x'
j=i-a]..aj n272.72.

,1 r2
with, of course, x =2,x n.x =2,x. n..a.

j=1
aj $ 2] 2j=1

(7... is computed using the Doolittle proceedures (see Section 10).

The critical region of size a is given by

(11.4.4) > F
( a)

n1 +n2-1-m
m:n

1
+n

2
-1-m

11.5 An example: Testing a relationship between elements within

the mean vector.

A task is performed on each of five successive days by 12

individuals (these individuals forming a fairly homogeneous group).

It is noticeable that the "time to complete the task" decreases

with each day due, most likely, to the experience gained. It is

required to test the hypothesis that the time to complete the

task is decreasing at a constant rate for each individual (the

rate almost certainly differs for different individuals). The

data are recorded below:

L1111111111011111111111111111111111.11--
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Time To Complete Task (Minutes)

11.vi
11.5

Individual Day 1 Day 2 Day 3 Day 4 Day 5

1 10.6 9.7 8.4 7.4 6.3

2 8.3 8.1 8.2 8.3 7.6

3 8.5 7.7 7.5 6.9 6.4

4 9.0 8.9 8.7 8.1 7.6

5 13.3 12.6 11.5 10.5 9.3

6 17.0 14.8 12.3 10.3 7.8

7 8.0 8.2 7.8 7.4 7.4

8 12.1 12.0 11.4 10.6 10.5

9 15.0 13.8 12.7 11.9 10.6

10 13.8 12.1 10.9 9.0 7.0

11 13.7 13.3 12.4 11.7 10.9

12 11.3 10.6 9.1 8.0 6.7

The data collected is sayt, t = 1, 2, 12, with yt

the five entry vector for individual t. The mean vector

lit = 4;(4t) should, under Ho, satisfy

Ho' u lt-u 2t = u 2t -11 3t = u 3t-u 4t = u 4t-u 5t

or, alternatively

H
o: 2112t 42t =

0

42t 2113t 114t =
0

113t 2/14t m5t = 0

(all t)
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Accordingly, to test Ho, we construct

-t

1[13t1

v

Y3t 2Y4t Y 5t

x
2t

=
-2t 2Y5t Y 4t

Ylt 2Y2t Y3t+

x

and if Ho be true, then q(21t) = for all t. The vector xt are

11.vii
11.5

x' = (-0.4

x' = (+0.3

x' = (+0.6

x'
-4 = (-0.1

x'6 = (-0.4

x6 = (-0.3

(-0.6

(-0.5

(+0.1

x' =

x'6 =

x' =

x'
10 = (+0.5-

x'
11= (-0.5

x'
12 ( -0.8

+0,3 -0.1)

+0.0 -0.8)

-0.4 +0.1)

-0.4 +0.1)

+0.1 -0.2)

+0.5 -0.5)

+0.0 +0.4)

-0.2 +0.7)

+0.3 -0.5)

-0.7 -0.1)

+0,2 -0.1)

+0.4 -0.2)

1thus (7 - u rr= (-2.1 +0.1 -1.2)

and C = Ixtx' - 1277'..t

= +2.63

-1.15

(:-0.40

-1.15

+1.49

-0.70

-0.40\

-0.70

+1.92

1
- rr

-2.1

+0.1

(-2.1 +0.1 -1.2)
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1

(+27.15

-13.59

-7.32

-13.59

+17.87

-8.28

-7.32\

-8.28

+21.60i/

The test criterion (see 1.3.2) is then

(-2.1 +0.1 -1.2) +27.15 -13.59

-13.59 +17.87

(: -7.32 -8.28

-7.32

-8.28

+21.60

ll.viii
11;5

(note that the factors of 12 and 1/12 cancel so that it is

unnecessary, and inadvisable computationally to divide by 12

where indicated to obtain

The quantity

indicated below

Doolittle Proceedure

is obtained by a Doolittle process as

12(-P ) Check12 C

+12.15 -13.59 -7.32 -2.1 +4.14

+27.15 -13.59 -7.32 -2.1 +4.14

1. -0.50055248 -0626961325 -0.07734806 +0,15248618

+17.87 -8.28 +0.1 -3.90

+11.06749180 -11.94400440 -0,95116013 -1.82771281

1. -1.07920062 -0.08594179 -0.16514245

+21.60 -1.2 .+4,8

+6.73641124 -2.79268033 +3.94373014

1,. -0.41456500 +0,58543488

= (-2.1)(-0.07734806) + (-0.95116013)( -0.08,594179)

+ (-2,79268033)(-0.41456500) = 1.3978.
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Critical regions for

size 0.001 4.63

size 0.005 2.91

size 0.01 2.33

size 0.025 1.69

size 0.05 1.29

11.ix
11.5

Theolyypothesis of a linearly decreasing time to complete task

over the five days would be rejected at a 5% level.

It is interesting to observe that had the test been per-

formed on any consecutive three days only (which would lead to

the following t 2
-test criteria

-2 1
12 (

Days 1,2,3
27.15
'177TT

0 1 2
12(-141-)

Days 2,3,4
17.87
nirrr

2

1.787

= 0.006

2

12(
1 2

Days 3,4,5 0.733
21.60
l'efx11

refer to F
1:11

refer to F1:11

refer to F
1:11 )

none of the results would show as significant at the 5% level.

The three F
1:11 ratios are of course correlated so that it

would be difficult to give a significance level to any one in

.the presence of the other two; nevertheless, the value r(05)
1.11
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is 4.84 which greatly exceeds any of the three values.

Considering the significance of 00-?against the non-

significance of the three F1:11 ratios in the context of the

data, we are not too surprised. A better straight line fit

to three days in inevitably available as against a fit to five

days. Considered out of context though, the data makes an

interesting point:
12

Suppose the 12 vector observations .} are available
a-3 1

from the normal trivariate density; it is required to test

(ll
o ) that the mean vector of the normal density is a vec-

tor of zeros. The value of the test criterion is c<-

1.3978 which is significant at between the 2.5% and 5%

level so that H
o

is rejected. Three separate tests per-
12

formed on the component elements of {x.} , however, prove
3 1

non-significant individually.

This kind of situation is illustrated diagrametrically in the

next section.

11.6 A diagramatic illustration of the comparison of two

population means in the bivariate case.

The following diagram is a dot diagram of two bivariate

populations

x: represents a member of population 1

o: represents a member of population 2.
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X
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o
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O

11.xi
11.6

t._.±-44-1-0-4 If X 4,..9.07": A1-613 %A.

rFor, : JA.Lt,.
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A glance at the bivariate diagram is sufficient to indicate

that the two populations are different in respect of their

mean vector. All (or nearly all) the x-pointe lie inside an

ellipse essentially above the line OL, nearly all the o-points

lie inside an ellipse essentially below the line OL. Even

without resort to multivariate techniques and an appropriate

test, we would be prepared to pronounce the two populations

different. If we tried to assess the populations in respect

of one measurement alone (x1, say), then we would be looking

at the projection of all points (x's and o's) onto the abscissa

of the diagram. It is noted that there is considerable inter-

mingling of the projected points and one would be hard put to

decide whether these points came from a population with the

same (x1) or not. Similar remarks apply to the projection

onto the ordinate of the diagram when the values of ((x
2

)

are being compared. It is clear then that the bivariate com-

parison is much more decisive than two univariate comparisons.

Of course, the points have been chosen to illustrate the advan-

tage of a bivariate test (in general, a multivariate test) as

dramatically as possible; nevertheless, in cases where ul and

p2 vector means for two m-variate populations, are such that

corresponding elements of pl and 02 differ by only small quan-

tities, then it may well happen that each of the m univariate

tests would individually prove non-significant (using the stand-

ard t-test), whereas a multivariate test (Hotelling's) would

give a significant result.
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CHAPTER 12

ANALYSIS OF DESIGN

12.i
12.1,12.2

12.1 Introduction

We deal now with the analysis of data which are collected

from a "designed experiment." In this category would be included

the latin square; randomized block; cross-classifications; fac-

torial designs; and so forth. The analysis is only slightly more

complicated in the multivariate case than in the univariate case.

This slight complication arises from the fact that the percentage

points of the F-distribution provide the critical regions for the

test in the univariate situation where as in the multivariate

situation no such handy table of percentage points exist. The

level of significance of any given value of the test criterion

in the multivariate case is quite quickly established, however;

the formula being given in a later section.

It is assumed that the reader has a familiarity with uni-

variate proceedure and so only one situation will be developed;

this should suffice to demonstrate that the multivariate pro-

ceedure is a very simple modification of the univariate proceedure.

We choose to investigate the two-way cross classification of

which the randomized block is a well known example.

12.2 The two-way cross-classification; algebraic develo ment.

In our general design, let us assume r rows (blocks for

"...Irsow1100111, -16
example) and c colum~Weaments perhaps). Each vector of
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correlated observations x is classifiable according to a row and

a column. Supposing replicated vector observations (n per cell)

then we shall write xdjk for the k-th replicate in the i-th row,

j-th column (i = 1, 2, ..., r; j = 1, 2, c; k = 1, 2, ...,n).

The observations within a given cell will have the same

mean vector which will, however, vary from cell to cell. Accord-

ingly, our most general supposition would be:

i = 1, 2

(iijk) 2 Ilj
- , 9 ... , r

j = 1, 2, 4140.9 C .

Our first test (possible only if n>1), sometimes called the "test

of additivity", alternatively called "test for zero interactions"

can be stated algebraically as

i 2 1, 2, rH = p + a. +
o' ij j = 1, 2, c

r c
where p, (a.) and (0 ) are unknown. The hypothesis Ho expresses

1
61-i 1

the belief that the difference in expected "yield" (x) for any

two cells in the same row is a function only of the column num-

ber of those cells and not of the common row number; that is

/1j - /dg is independent of i.

The multivariate analysis table is:

Source Matrix Degrees of Freedom

Between rows nc 1(7. - x ) (7. 7 )' r-1
i -a.. -... -a.. ...4...

Between columns nr 1(7 . x ) (7 . 71 )' 1.kC3.

3.

-.3. .. -.3. -...

Interaction n11(7.. 7. -7 +x )(71a ..7. x +x )t (r-1) (c-1)

ij-a
j. -a.. -.J. -... .-uj. -u.. -.

Error 111(x.. - ;. )(x.. 7c. )' rc(n-1)
-a3k -i. -dj.

Total Z11(x.. - 7c. )( x.., - x P me -1
ijk -113k

-... -.13A -....
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The similarity of this table with the univariate table is

strikingly obvious.

Designating the matrices as they occur in the table by

M
R' C'

M
I'

M
r'

and
T

respectively then

To test for additivity:

IME I

IME+MII

Construct

MR + MC + MI + ME = MT

The use of the Doolittle proceedure is valuable in the computa-

tion of IMEI and
IME

+MII. Small values of4 are significant of

a contradiction to a hypothesis of additivity. In fact, if T is

an experimental value of ale:then it can be shown that, with

then

LIMINI111101.11Nmer maim air

1
p
o

= rc(n-1) - 7.(m+r+c-rc)

m(r -1)(c -1) 2

2 +(r-1)2(c -1)2-5)
48p

n
4

=
m(r-1)(c-1) [3m4+3(r-1) 4

(c-1)
4
+10m

2
(r-1)

2
(c-1)

2

1920po

Pr( -p
0

log 4Z42, <

-50m
2-50(r-1) 2

(c-1)
2
+169]

+
2N n f

(1 - n2 - n4 . 7m2, Pr{ X m(r-1)(c-1) T)

2, , f 2 < T)
4. (n2 n2I rr"m(r-1)(c-1)+4

1 2 2

+ (n4 + 7m2) Pr(X (m r-1)(c-1)+8 1 T)

+ a term of order ti, .

puo
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It is noted that w
2
and w

4
are usually quite small and it is

frequently only necessary to use

Pr(-p
o

log cZ.. < 1.) = Pr(X
m(r-1)(c-1)

<
2

12.3 An example in the test of additivity.

The following example relates to the performance of a group

of retarded children. Any child can be categorized according to

his I.Q. (broad group categories are used in our example) and

according to the type of school attended. Three I.Q. broad cate-

gories are considered

Q1: I.Q. of 60 or less

Q2: I.Q. of 75 or less, but more than 60

Q3: I.Q. in excess of 75

The types of school attended were three

Sl. public school (i.e. attended by the entire

spectrum of nI .N.'s.)

S
2

: special schools (i.e. attended by the somewhat

slower child, however, individual

attention is not the teaching

method)

S3: special schools (i.e. attended by the slower child,

the emphasis on individual attention).

Five children were examined in each of the nine groups and judged

on four tests; arithmetic, vocabulary, general science, construc-

tive aptitude. The vectors listed are the scores on the tests,

top -to- bottom in the order given above. [The scores themselves
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have been adjusted so that, in each test, the average score in

the (Q2,S2)-grioup is approximately 75; this helps in getting a

feel for the data, for example we observe that the second line

in the (Q3,S1)-group is in the 80's--higher than "average" and

the fourth line of the (Q1,33)-group is rather higher also than

the resto]

TABLE OF OBSERVATIONS

Q
C
L
A
S

S
I

F
I

C
A
T
I

0
N

TYPE OF SCHOOL ATTENDED

S1

16
70

78 79171 73 76
67 _74 L.72 _70 70

S
2

S

72 74 71 71 72
70 70 78 76 76
81 78 77 724 81

78 78 79
86 82 89,

72 75
88 88

5

7

78
72_ 6 66

69
77

7

79
76 76
1 71

74 73 73 74
77 72 78 76
70 7 73 72

77
75
73,

73 74 79 77 70
82 83.85 84

72 74 69 74
83 82 82 84
74 79 76 75
67 69 72 67

[781

75
73

73
78
76

73
81 71112

78 8
74

76 78i

77
81
71
74 1

79 73 79 77 77
75 76 78 73 79
76 $3 82 Lg2 75

*Within a given cell there are five replicates of (4x1)-column

vectors.
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Q 3

S1

T.-34g-

i

373

377

353

387

386

348

-3617

409

379

348
MEN11111
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Table of. Sums

S
2

'meows

370

360

370

389

.111NOMMI -
367

371

378

364

375

392

367

385
11I 111

Sub

Totals

1051

1169

1142

1049..

1112

1123

1115

(1138

S
3

396

371

382

433

414

.361

373

01111=111.

402

385

381

398

1116

1136

1245

12.vi
12.3

Sub Total

1115

1103

1129

1175
.01.11

1101

1119

1137

1126

1138

1186

1127

1131
....=mb al1

3432

3408

3393

Before computing tables of cross-products, we subtract 60 from

every element (for computational convenience).
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Table of Within Cell Cross Products

620

1105

1150

788

S
1

764

1150

1231

814

846

726

826

1075

S2

976

826

1036

1224

1248

1075

1224

1639

483

620

764

515

515

788

814

589

A111111011

996

846

976

1248

0 1 4- %AG* =1
MO MEOW,

.0
375 731 706 391 945 964 1048 861

731 1523 1497 830 964 1019 1107 911

Q2 706 1497 1486 818 1048 1107 1238 1003

391 830 818 486 1 861 911 1003 848
411111IN

761 1334 968 572 1151 1398 1008 1262

1334 2397 1722 1025 1398 1742 1205 1564
Q3

968 1722 1263 761 1008 1205 931 1143

572 1035 761 492 1262 1564 1143 1473

12.vii
12.3

S3

1878 1366 1565

1366 1026 1153

1565 1153 1378

2554 1875 2171
411111MM

11
1759 1149 1327

1149 761 865

1327 865 1115

2121 1386 1669

2134 1756 1677

1756 1469 1379

1677 1379 1335

1993 1650 1575

Matrix of total variation (MT
) [degrees of freedom: 44]

43974 -5652 -1467 39537

-5652 28296 36 -18576

-1467 36 15336 -4266

39537 -18576 -4266 79956

Matrix of Error variation (M
E
) [degrees of freedom: 36]

1324

107

3

-167

107

1110

- 174

- 55

3 -167

-174 -55

1412 -194

-194 1502

2554

1875

2171

3569

2121

1386

1669

2610

1993

1650

1575

1978



268 12.viii

12.3

MatriX of column (schooling) variation (Mc) [degrees of freedom: 2]

1

29562

- 10779

- 828

41322
1111

- 10779

4974

1413

- 15231

-828

1413

1206

1332

41322

-15231

1332

57786m

Matrix of Row (I.Q.) variation (M
R

) [degrees of freedom: 2]

2094

4164

- 528

-141

4164

11634

-708

-4101

-528

-708

168

-354

-141

- 4101

- 354

4362

Matrix of interaction variation (M
I

) [degrees of freedom: 4]

[obtained by subtraction]

1

402

0

-138

-1'147

0

1698

897

811

-138

897

1254

-3498

-3147

811

-3498

4290

Before .proceding to the construction of the test statistic it is

1 1
interesting to compare the matrices Tr ME and MI in respect of

their diagonal terms; this would correspond to four individual

tests of additivity of

additivity of

additivity of

additivity of

effects

effects

effects

effects

on arithem tic score

on vocabulary score

on general science score

on constructive attitude score.

The F ratios are respectively:
402Tor27 ;

1698Tem 1254 4290Trivr
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Only the last of these is significant at the 5% level when considered

as an individual test.

The next step is to perforr a Doolittle on M
E

and on M
E
+M

I
to

obtain the determinants of each.

Doolittle on 5ML

5M
E

1324 107 3 -167

1324 107 3 -167

1 0,080815 0.002265 -0.126132

1110 -174 -55

1101.3528 -174.2424 -41.5039

1 -0.158207 -0.037684

Check

1267

1267

0.956948

988

885.6066

0.804108

1412 -194

1384.4268 -200.1878

1 -0.144599

1047

1184.2389

0.855400

1502

1450.425'.

'1EI = ( 1324)( 1101 .3528)(1384.4268)(1450.425054

= 0.468489 x 10 10
.
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Doolittle Qn 45(MeMI)

45(M
E
+M

I
)

12318 963 -111 -4650

12318 963 -111 -4650

1 0.078178 -0.009011 -0.377496

12.x
12..3

Check

8520

8520

0.691670

11688 -669 316

11612.715 -660.322 679.529

1 - 0.056861 0.058515

12298

11631.922

0

13962

13923.453

- 5244

- 5247.263

-0.376865

7938

8676.189

0.623134

17808

14035.371

11E+14,1 = (12318)(11612.715)(13923.453)(14035.371)/(45)4

Finally

= 0.68170 x 10 10

Im El
= 0.68724 .

IME+MH1

To establish the significance level of this experimental value

we require Pr{44 < 0.68672). Now m=4; r=c=3; n=5 so that

po
1= 36 - 14+3+3.9) = 351/2

4.2.2 2 2
n2 7- +2

2 .2 -5) = 0.007141
48p

w
4

4.2.2
1,(3.4

4
+3.2

4
.2

4
+10.4

2
.2

2
02

2 -50.4
2 -50.2

2
.2

2
+159)

1920 P
o

= 0.87066 x 10
-6
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Clearly IT2
2 and n4 can be neglected in the formula for the signifi-

cant level. We have then

Pr(

A value of

0.68724) = Pr{ -loge > 0.3758)

= Pr(-34.1oge > l3.34}

= (00992859)Pr(X .6.>13.34)+(0.007141)Pr{x22(>13.34)

= 0.649

les's than or equal to the observed value of 0068672

could be obtained approximately 65% of occassions by chance varia-

tion; there is no evidence to contradict the hypothesis that the

effects are additive.

Since the so-called interaction term is not significantly

different from zero, it would be meaningful to test the main effects.

Suppose it is required to test T.Ilat only the second (vocabulary)

and fourth (constructive aptitude) scores differ with I.Q. level.

A check on diagonal elements of row matrix versus error matrix

suggests that the least contribution is due to the third score;

the next to the first score, the next to the fourth score and the

most contribution from the second score. We reorder our elements

within the vector to conform with this contribution order. The

listing of scores now becomes

general science

arithmetic

constructive aptitude

vocabulary

Rearranging MR and ME to conform with this ordering we have



ME

1

R

272

1412 3 -194 -174

3 1324 -167 107

-194 -167 1502 -55

-174 107 -55 1110
,INOMMII

168

- 528

- 354

- 708

mo11040,

-528 -354 -708

2094 -141 4164

- 141 4362 -4101

4164 -4101 11634
mmemml,

12.xii
12.3

We perform forward Doolittles on each of ME and ME + MR =

12876

- 501

- 2100

- 2274a
Doolittle on 5M

E

1412

1412

1

5M
E

3

3

0.002124

.1.1.11=1.mm,

- 501 -2100 -2274

14010 -1644 5127

- 1644 17880 -4596

5127 -4596 ^1624

- 194

- 194

-0.137393

11.111.

- 174

- 174

-0.123224

1324

1323.9936

1

- 167

- 166.5878

0.125822

107

107,3697

0.081095

Check

1047

1047

_0.741501

1267

1264.7755

0.955273

1502

1454.3853

1

- 55

- 65,3970

-0.044965

1110

1076,9104

1086

1388.9880

0.955034

MFG = (1412)(1323,9936)(1454.3853)(1076.9104)

= 0.468489 x 10
10
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Doolittle on 45(ME+Mc)

45(M
E
+M

C
)

12876 -501 -2100 -2274

12876 -501 -2100 -2274

1 -0.038909 -0.163094 -0.176607

14010 -1644 5127

13990.5066 -1725.7101 5038.5199

1 -0.123348 0.360138

12.xiii
12.3

Check

8001

8001

0.621385

16992

17303.3154

1.236789

17880 -4596

17324.6397 -4345.3809

1 -0.250820

9540

12979.2541

0.749179

21624

16693.9248

dli d2i

diagonal terms 0a diagonal terms of F-ratio* d.f.
JoolJttlP on M

E
Doolittle on M

E
+M

R

= 1 282.400 286,133 0,2379 2:36

2 264.799 310.900 3.0467 2:35

3 290.877 384.992 5.5004 2:34

4 215.382 370.976 11.9197 2:33

(d
j ij

)/degrees of freedom of M
R*F-ratio

d1j/l -j + degrees of freedom of ME

Of these ratios, thL, first and second (j=1,2) are not significant

at the 5% level. The third, considered as a single test, would be

significant at the 1% level (but not at the 0.5% level); the fourth

figure is highly significant.

It seems reasonable to infer that, within the range considered,

the performance in generrl science and arithmetic is relatively
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unaffected by the level of I.Q.; however, the individual will

perform significantly differently in constructive aptitude and

vocabulary.

The j-th F-ratio measures the contribution to significance

over and above the contribution of the 1st, 2nd, (j-1)-th

variable. The F-ratio of 0.2379 measures the contribution to

significance of the difference between the first element in he

vector

general science score

arithmetic score

constructive aptitude score

vocabulary score

between the I.Q. levels. The figure is so small that we elect

to state chat no differences exist; an examination of the table

of sums (third element in sub-totals for rows: 1129; 1137;

1127) fortifies our belief in the non-existence of any difference.

F-ratio 3.0467 is not significant at the 5% level for single

tests; this ratio corresponds to a comparison of the arithmetic

scores for which the subtotals are 1115; 1101; 1138. The F-ratio

5.5004 (constructive aptitude scores) corresponds to the subtotal

figures 1175; 1126; 1131. This last F-ratio is rather border-line

and one may hesitate to assert that the difference is significant

(bearing in mind that several tests have been made and that the

data has been ordered the 'r- ratio" does not have exactly the

F-distribution). The final F-ratio of 11'9197 corresponds to the

vocabulary scores for which the row (I.Q.) subtotals are 1103;

1119; 1186. We assert with some confidence that the vocabulary

score differs significantly between the I.Q. groups within the

range considered.
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CHAPTER 13

ANALYSIS or REGRESSION

13.i
13.1,13.2

13.1 Introduction

In the analysis of regression we lack the simplicity of com-

putation usually found in the analysis of design; to compensate for

this however is the fact that the so-called "design matrix" is of

full rank, the result of which is that the square matrices of our

normal equations do indeed have inverses. We look in this chapter

at two problems (which actually are essentially the same)

(a) the curvilinear regression on a single coLcommitant

variable

(b) the multiple regression on several concommitant variables.

13.2 Curvilinear regression (general case).

Observed are n. (mxl) vector variates at time (or temperature

or any other concomitant variable) ti. We denote the observations
k n.

by (xi.) 1 so that k different temperatures are involved.

Let u.(t) be a polynomial in t of degree j (j=0,1,2 ,...); these

polynomials are arbitrary except in special cases we will usually

adopt the system 11.(t) tj. Our objective is to test the hypo-

thesis that each element'in the vector j) is a polynomial in

t of degree no more than s.

We may write our model:

13.2.1 (xij) = B uo(ti)+01u1(ti)+...+Bsus(ti)+ds(ti)
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where the 1 (ti) represents a general polynomial of degree
j=0-9-.3 1

s and where Is(ti) represents a "departure from s-th degree

polynomial." The analysis table again has the striking resemb-

lance to the univariate table, squares in the latter become the

product of the column vector by its transpose for the latter.

The table is:

Degrees of
Source Matrix Freedom

Due to polynomial
of degree s

About Polynomial
of degree s

Error

Total

k

Y,Y.
i=1 ""1 1

s+1

(El
k-s-1

i=1

k n.

11(Xii-26.i )
i=1 j=1

k n.

i=1 j=1 13 13

N-k

In the table xl is the best estimate of
13

on the assumption

that H
o

is true and is obtained via

where

and

A A A

0 u (t.) + u (t.)+ + u (t.)0 0 1 a 1 1 a" S 1

{ay} are the solutions of
amil y=1

k
.1 nix4.uy(ti) = a Ezu

i l
(t.)u

y i l
(t)n.]

1=1 '

271.

1 ri
n.
1

Zij
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1
k n.

= IT
1=11=1 j=1

(N = Zn)
'

13.iii
13.2

Clearly the stickiest part of the analysis is the solution for

the {3 } , however this is accomplished routinely through a
mY y=0

Doolittle computation.

Let G be the matrix (mx4Err) whose y-th column is

niYi.uY(ti) (y = 0, 1, .4.9 0

and A be the matrix (symmetric raVrrr) whose (2.,y)-th element is

I n,' ult(ti)uy(ti)
1 Y

0, 1, 2,, obs9 s

If B is the (mx771) matrix B = 9.a, . 9,,,(0 0 s ) then our system of.0

equetions on the (0y) can be written as

G = BA

with G and A known. The problem of finding B is dealt with in
A A

Chapter 10. Having got B, the Yi are easy to calculate and thence

the entries in the analysis table.

Labelling the four matrices in the table, top to bottom, by

CD, CAS CE, ana C
T

respectiv ly then. the test function is

0.Z:f ICAI

ICE+CAI

small values of e< are significant.

To assess the significance of an experimental value of

we set

v
1

= k-s-1

v
2

= N-k
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1
po v2

7(m +1
-v1)

IT

MV1 ( 2

2 48p
%m +vi-6)

o

mv
1

(3m
4
+3v

4
+10m

2
v
2-50n 2-50v 2

+159)
192 0p

4 ".77 1 1 1
0

and note that

13.iv
1:4.2,13.3

Pr(-po log c2.. < T) = (1-w
2
-IT

4
-7r

2

2
)Pr(x <T) + (ff2-7r22 4)Pr(X

2

1
mv

1
+1T)mv

2 der p
o
6-

+ (IT
4
+7r )Pr(xmv +8

IT) + a term of order
1

13.3 Curvilinear regression; no replication.

In the case of no replication (n1=1), the "error matrix" of

the previous section is identically zero; we need some kind of

estimate of the common dispersion matrix of the To To con-

solidate ideas, let us set up our model again for this case of

no replication; the suffix "j" is now dropped since j can only

take the value 1. The model is

(4.) = 0 uo(ti) + 81u1(ti) + + 0
S 1
u (t.) + d

S
(t.).

sD 1

If it should turn out that s is two small to represent the degree

of the polynomial which expresses the behaviour of (zi) then

the "about polynomial of degree s" of the previous section would

have proved significant; on the other hand, had the true degree

of the polynomial been s or less then the "about polynomial of

degree s" would itself have been a measure of the dispersion matrix

of a vector observation. We use this last statement to deal with
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this unreplicated data. It is required to test the hypothesis

(Ho) that the elements of 4(4.) lie on a polynomial of order

not exceeding s. In preparing an analysis table it is to be

remembered that H
o
may be false in which case the degree of the

polynomial will indeed be greater than s; in this event the

"about polynomial of degree s" will not be a measure of the

common dispersion matrix but will be confounded with variations

of the true polynomial about the fitted s-th order polynomial.

We find ourselves forced to make some pronouncement con-

cerning the true order of the polynomial and state (for some

> 0) that we believe that the order of the regression polynomial

is not in excess of s+R. For example, we may wish to test that

the regression is quadratic (s=2) feeling that (H1) if a quad-

ratic is inadequate then .a cubic 'must surely be a polynoMial of

sufficiently high order to represent the data; we might feel

safe in taking t=1 or to be "on the safe side" it might be pre-

ferred that it be set equal to 3 As in the previous section,

let G be the (m4.71) matrix whose y-th column is:

lyduy(ti) 0, 1, sof, S

and A be the matrix (symmetric, 17.nagri) whose (6,y)-th element is

/116(ti)tly(ti) e 11 0 , 1 , 2 , 41!°, S ,

i Y

then if B is the (mxsl) matrix B = (3 019 oo*, Bs), then B is

the solution of (see Chapter 10)
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ya = uo(ti) + + + a u
s
(t.)

s 1

13. v:

13.3

k ^ ^

then I.1 z.z.! is the "due to polynomial of degree s" and
3. 3.

k
I (z1-za)(za-zaP is a measure of the variation not acco-nted for

i=1

by the s-th order polynomial; this will be a measure of if and

only if Ho is true.

Let now G51 be the (m)(7+1+ ) matrix whose y-th column is

lyauy(ti) y 2= 0, 1, 2, 41,419 s+Q

so that G is the first s+1 columns of G* and let A be the matrix

(symmetric, si=l-ixs-1=1-6) whose (6,y)-th element is

uts(yuy(ti) 0, 1, 2, ..., s+t

then if B* is the (m$17-7) matrix, B* = Ot, B:+x)

then is the solution (see Chapter 10)

Now set

A
G = BIM .

= uo(ti) + ofe u (t.)1 1 (t.) + +1
ss*

+t
u

2,s+

k
then 1 (x.-y)(x.4-y0 is a measure of the variation of the za

04. .a. ONO .

about a polynomial of degree s +Q,. If our choice of I is not too

small, this should be purely random fluctuation.

Our analysis table is:
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Due to polynomial
of degree s.
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Matrix Degrees of Freedom

AGain in fitting polynomial r"4"4,...T.
A

of degree s+g, LY±X± LZiZi

About polynomial of
degree s+it

Total

If the matrices listed above are, top to buttom CD, CG, CA and

C
T

then CD + CG + CA = C
T.

Our test function is

ICGI

ICG+CAI

and to assess the significance of we set

then

v
1

= 2.

v
2

= k-t-s-1

1

P o "2 71(1"-v1)

mv
1 2 2_ ...T (m +

1
-5)

48p4
0

Inv
1 (3m4+10m2v2+3v4.50(m2+v2)+159)

1920p
1 1 1

0

2,, , 2 2,, , 2
Pr(-p

o
log eg.< T) = (1-1T

2
-IT

4 2
irr%xmv <T)+(n

2 2
irmxmv +4 <T)

1 1

2 -
+Or

4
+ff

2

2
)Pr(xmv +8

<T)+a term of order p
o
6

1
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CHAPTER 14

TEST OF HYPOTHESIS ON THE DISPERSION MATRIX

14.i
14.1,14.2

14.1 Introduction

We have seen in the preceding chapters how tests of hypothesis

in the multivariate' case are directly related to the corresponding

test in the univariate case; the only essential difference is the

distribution of the test criterion.

In the univariate case we have only a single (unknown) para-

meter, a, expressing the standard deviation of the random error;

in the multivariate case we have the array of parameters in V,

the dispersion matrix of the vector observation x. As a conse-

quence we have the possibility of hypothesis concerning the ele-

ments of V which do not bn.ve a counterpart in the univariate

methods and theory. In this chapter we shall be concerned with a

test of independence between specified groups of elements of the

observed variate x.

14.2 The intra-independence of elements of 4.

Let us assume we have available the sequence of observations

2a 9
x2,

9
x
n

randomly independently drawn from a normal popula-

tiontion (or set of populations) with Jispersion matrix (or dispersion

matrices all equal to) V. For any given model for the mean vectors,

4(xi) we can construct an error matrix, ME say. Examples of such

a construction are given in earlier chapters; in Chapter 12) ME

would be the error matrix in the cross-classification. If ) =x.q
-.3

II, j = 1,...,n, so that 4a, 112, ..., xn are drawn from the same
..

population (that is, same mean, same dispersion matrix) then



where

283

n
ME = .1 (x4-7 )(x. -x )'

3=1
.

4 2ij
3

14.ii
14.2

(v=n-1 below)

Suppose the degrees of freedom assoc53ted with the error matrix

is v (v= rc(n-1) in the example in Chapter 12), then we may require

to test

H
o

: v..
13

= 0 , iAj = 1, 2

that is all off diagonal elements of V are zero. If x has the

multivariate normal density the V diagonal is a necessary and

sufficient condition for the mutual independence of all elements

of x.

in

The appropriate likelihood ratio test function is monotonic

IME

where (ME )
jj

is the j-th diagonal element of ME. The null distri-

bution of this criterion is unobtainable except for m=2 when

reduces to essentially the well known test for independence be-
xi

tween two variates x
1
and x

2
(that is x = )

2

For values of m exceeding two, we resort to an approximation

to obtain the significance level of an observed value of

f =
1
wm(m-1)

2m+5
Po = v

With
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2 1then Fri -p
o

log 04> T] = Prix
f

> T] + 0( .4)
Po

14.iii
14.2,14.3

By way of illustration we take the error matrix of the

example in Chapter 12. [It is noted there that the off-diagonal

elements in M
E are small compared with the diagonal terms, sug-

gesting the possibility of mutual independence.

Now IMEI = 0.468489 x 10 10

and 4

(M ).. = 0.498696 x 1010
J=1 E 33

so that c70.9394; f=6; po = 203/6

Now small values of 0.(are significant and

Pr[c < 0.9394] = Pr[log a* -0.0625]

= Pr[-polog 4Z> 2.11] = Pr[x26 > 2.11]

= 0.92

There is every evidence therefore that the hypothesis of mutual

independence of the scores discussed in Chapter 12 can be held

to be true.

14.3 The inter-independence of two sets of variates.

Again we assume available the sequence of observations xi,

x
2

x
n randomly and independently drawn from a normal popula-

tion (or populations) such that the error matrix (M
E
) has v de-

grees of freedom. For convenience we shall drop the suffix E to

M
E in this section writing simply M for the error matrix. If x

is partitioned into two sets of elements x(1) and x(2) so that



X = 0 0

2i(2)

with p elements in the vector x
(1)

and q = m-p elements in the
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vector x(2), then it may be required to test that every element of

x(1) is independent of every element of x(2) (whilst still allow-

ing that there may be intra-dependence in either or both partition

vectors). If the dispersion matrix is V and we partiiton V as:

V =
( 0 0 0 ." a
:)V11 i V12

V V
21 : 22

with V
11

a pxp matrix and V
22

a qsq matrix then the hypothesis

of inter-independence can be statied as:

Ho: V12 = (0); (V12 a matrix of all zeros).

If M be partitioned in the same way as was V, that is

(

M M m
11

is pxp; Pi'cl = m11 . 12
M ......... ; M

22
is qxq

M M
21 : 22

then our test criterion is

cZ:The distribution of independent upon p and q and we have a

readily available method of getting a critical region for if

p or q is either 1 or 2; otherwise we resort to a very adequate

approximation.

Case p=1. (q=m-1).

1-

q
is distributed as Fq:v-q , (large values signifi-

cant).



286 14.v
14.3

Case q=1. (p=m-1).

x V-1) is distributed as . (large values

P

P:v-P

significant).

Case p=2. (q=m-2).

Case q=2. (p=m-2).

v-g-1 is distributed as F :2(v-q-1)
(large.

values significant).

is distributed as F2p:2(v-p-1) . (large

If both p and q exceed 2 then we set

m
Po v

+1
"rum

.127 (p24.(12-5)

48p
o

then

4
Pq

1920p
o

values significant).

4(3(p4.q
+ )+10p2q2-50(p

2
+q

2
)+159)

2 ,Pr[-p
o
log T] (1-1T

2
-IT

4
+.m2)PrLX

Pq
> T]

r 22%, r 2
+ (11.2-11.2irrLxpq+4>T] + (11.44m22)rmxpq+8>T]

-
+ terms of order P

o
6

14.4 Equality of a number of dispersion matrices.

Suppose from each of k populations we have available an esti-

mate of the dispersion matrix based on an "error-matrix" Ct with,
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say, vt degrees of freedom (t=1,2,...,k). The estimate of Vt, the

dispersion matrix for the t-th population would be therefore --C..
v
t

It is required to test

Ho: V1 = V2 = V
k

The likelihood ratio test currently used is that derivable
k

from the joint density of the {Ct} rather than from the original
t=1

(normally distributed) variates. This likelihood ratio is u where

rlog u = (71m0
t
)log(lvt) - rilvtlogvt

+ ylv logIC
t 2

1
I - )logliCtizt t

The distribution of u, or actually log u, can be approximated to

by a x 2 -density. If we define

p O
1

2m
2 +3m-1

6(m+1)(1(-1)

1 r
- (Lv

t
)

vt

and define y by:

48p2 = m(m2-1)(m+2, - (lvt)-2
O z

vv
t

-6m(m+M-1)(1-p0)2

then with

f = 7m(m+1)(k-1),

it can be shown that

Pr -2 logu > T = (1-Y)PrO4 YPr{x4.4 T}

+ terms of order (Iv
t

)*

-3
.

Small values of u (and therefore large values of -2plogu) are

significant of departures from Ho.
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CHAPTER 15

LINEAR DISCRIMINANTS

15.1 Introduction

The use of linear discriminants is quite wide spread in the

problem of "reducing the dimension of the data." Suppose it is

intended to make a detailed survey of, say, the general build and

physical development of 15 year old male children according to

their environment; urban, suburban, and rural. There are a large

number of measurements which can be made on the human body: height;

veight; waist measure, chest measure (exhaled and inhaled); length

of leg, arm; distance around neck, head, calf, thigh; shoulder width--

and so on. Each of these measurements is an indication of build and

physical development which may vary according to the environment.

However, for obvious reasons, it is undesirable to amass a super-

fluity of measurements on a large group of individuals.

There are basically. two reasons why a particular measurement

could be excluded from consideration:

(i) it is so highly related to another observation that it

,..ontributes little to our knowledge in the presence of

this other variable.

As an example, shoulder width and chest girth are highly correlated

variables. A casual glance et the human race is sufficient to indi-

cate that the arms hang down from the shoulders touching the side

of the rib cage in almost all cases so that we would intuitively

guess that this high correlation exists. However, other variables

(height and waist) have low correlation; it is noticeable that

15.1
15.1
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people of the same height differ quite considerable in their gen-

eral build and in particular in the waist measurement.

(ii) a variable should also be considered for exclusion if

it does not differ with, in our case, different environ-

ment, or if it differs so little as to be of little use

in our investigation.

As an example, many measurements on the skeleton (particularly

the skull) are no more variable across categories (suburban, urban,

rural) than they are within each category and therefore, are un-

likely to contribute much to our understanding of variations across

these categories.

Rolf E. Bargmann (Part III of this contract) has given a de-

tailed account of the use and application of discriminant functions

so that in this volume we give only a resume.

15.2 Selection of significant variables.

Suppose we have k groups with, say, ni vector observations in

the i-th group:

Group I Group II Group i Group k

411'a122""aan
1

Z.212a222".24.2n
2

Eil2ni2"."?Lin 3(124(2""knx x

and we shall further suppose that each vector observation contains m

e'ements, (possibly the arfthropometric measurements discussed in

section 15.1). The expectation of most elements of adj will change

with group; some however (skull measurements perhaps) will not.

Rather than work with a vector of observations we choose to

work with a scalar observation defined as a linear combination of

the elements of the vector. Thus if adi is the j-th replicate in

group i, we construct



z.. - a X..,
1J am, "Naj
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j = 1929000.11,1 ; 1.11.9290049k'

for some, at the moment general a. The observation in group i

are now zilszi2,... ,zin. a set of ni independent scalar observa-

tions.

Using the standard univariate techniques, we have

Source Sum of Squares

Between group l(z. -z )2n.
i1. .. 1

Within group 1 Z (z..--zsi. )2
13 1.

where

v-

ni "ij
J

= z..
1J

c n.

Degrees of Freedom

k -1

k
1 (n4-1)

1=1

i=1,2...,k

Our usual test statistic expressing a difference between the groups is

1.77r I ai.- 11')2
1

. 11

1 ,2

1 (114-1) 1J
i=1

referred to F-tables, degrees of freedom {k-1; 1(ni-1)}.

The choice of a is arbitrary at the moment but it seems reason-

able to select that value of a which maximizes . It is easily

shown that a = a* must satisfy

(H-60E)01* = 0
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where

E
3. 3

(the familiar "error matrix")

and

H = (37. )( Tcm.
-a. .4, ._1.

(the familiar "hypothesis matrix").

15.iv
15.2

0 is the maximal solution of 111-0EI = 0 and a the associated eigen

vector.

Of course with a so selected the "between group" an "within

group" sums of squares no longer have x2-distributions. However,

we may say that z. = atx. is the linear function of the elements
ij

of x.qj which discriminates best between the groups. If
om

x.. =

then we construct a table of correlations between

z13 .. and x..
q 13 '

that is, we compute

r

q 2 1, 2, m ,

(ZirEis)(teircireid
q

-- 2 /1
(1(z..-z.

.
) ) (1(

q
x
ij

-
q

9

1 1 )-)
13

the inference is that a high value of rq indicates that the elements

qxij are "almost as good" as zij in discriminating between the groups.
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The set of small correlations are noted (r
a

< 0.25 sat) and it may

be decided not to make the corresponding measure cixii in a large

scale experiment.

This approach, it is admitted, is somewhat lacking in dis-

tributional justification; howe7er, it does give us some idea of the
n

relative roles of the elements { x. } in respect of their dif-
q

ferences across the groups. Having decided that certain elements

are of'the non-contributing type, it is as well to use the step-down

approach (section 12.3) as a check.


